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Abstract
The β-Hermite ensemble (β-HE) of tridiagonal N × N random matrices of
Dumitriu and Edelman (2002 J. Math. Phys. 43 5830) is a continuum of
ensembles in which β, the reciprocal of the temperature in the 2D electrostatic
interpretation of the eigenvalue characteristics, can take any value. The
eigenvalue distributions coincide with those of the classical Gaussian ensembles
(GOE, GUE, GSE) for β = 1, 2, 4. A fixed-trace β-Hermite ensemble
(β-FTHE) is defined from the β-HE and is used to extend the spherical
ensembles of classical symmetries to β-spherical ensembles. At low
temperature, when β → ∞, for a fixed value of N, the asymptotic distributions
of reduced determinants DN,β of random N × N β-H and β-FTH matrices
are shown to be standard Gaussians. Accordingly, the fluctuations of the
potential at the origin, −ln|DN,β |, have a generalized Gumbel distribution
at low temperature. For large N and large β, a ln(N) variance results from
the strongly correlated fluctuations of eigenvalues around their equilibrium
positions.

PACS numbers: 02.10.Yn, 02.50.−r, 05.90.+m

(Some figures in this article are in colour only in the electronic version)

1. Introduction

1.1. General

Introduced by Wigner in physics [1], random matrix theory (RMT) continues to be of
considerable interest in branches as different as quantum chaology, for investigating growth
models or in econophysics to quote just a few [1–7]. Many characteristics of the distributions
of eigenvalues of N × N random matrices from the three fundamental Gaussian ensembles,
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the GXE’s where X = O, U, S means orthogonal, unitary and symplectic respectively, are
known both exactly at finite N and asymptotically at large N for which local statistics are
often universally distributed once properly scaled. Matrices are real symmetric for the GOE,
Hermitian for the GUE and quaternion self-dual for the GSE. Recent works on the GXE
matrices focused for instance on the calculations of the exact global densities and on the
oscillatory large-N corrections to the Wigner semi-circle, on the averages of characteristic
polynomials and of their ratios and on the use of supersymmetry [8–10]. Further, the scaled m
largest eigenvalues of large N×N random matrices from the GXE’s are for instance universally
distributed according to Tracy–Widom distributions which enlarge the field covered by extreme
value theory [4, 5 and references therein].

The number of distinct real random variables, which are necessary to construct a N × N

GXE matrix, is Nρ = N + β N(N−1)

2 , with β = 1, 2, 4 for the GOE, the GUE and the GSE
respectively, where ρ = β

2 will be used hereafter. Further, β is zero for an ensemble of
diagonal matrices with identically and independently distributed (iid) Gaussian variables. The
joint distribution of eigenvalues (λ1, λ2, . . . , λN) of N×N random matrices from the Gaussian
ensembles is [1]


PN,β(λ1, . . . , λN) = KN,β exp

(
− 1

2σ 2

[
N∑

k=1

λ2
k

]) ∏
1�j<k�N

|λj − λk|β



ρ = β

2
KN,β = σ−Nρ/2(2π)−N/2

N∏
j=1

�(1 + ρ)

�(1 + jρ)

(1)

where KN,β is the reciprocal of the Mehta integral [1, p 354]. The Nρ distinct elements of the
GXE matrices are recalled to be independently distributed according to Gaussian distributions
with zero means and variances σ 2

ij = σ 2
( 1+δij

2

)
for β = 0, 1, 2, denoted hereafter by N

(
0, σ 2

ij

)
.

1.2. The β-Hermite ensemble of tridiagonal random matrices and the Gaussian log-gas

The properties of eigenvalues of random matrix ensembles can be interpreted in 2D from the
equilibrium characteristics of a gas of N identical point charges on a line [1], often referred
to as a log-gas [8], which interact via a logarithmic Coulomb potential and are confined by
an external potential. The external potential is harmonic in the case of Gaussian ensembles
as seen by rewriting equation (1) as a Boltzmann factor at a temperature 1/β which depends
only on the symmetry of the considered ensemble. As β has no reason to be restricted to
some integer values in this electrostatic interpretation, it was desirable to extend the previous
Gaussian ensembles so as to let β take any positive value. Dumitriu and Edelman [11] found
an elegant solution to the latter problem, namely the β-Hermite (β-H) ensemble of tridiagonal
random matrices, defined in section 2, whose density of eigenvalues is given by equation (1)
whatever β [11–15]. The use of β-H matrices results, among others, in an unrivalled speed up
and efficiency of numerical simulations of all characteristics of the eigenvalue distributions of
large random matrices (section 2.1). Extensions of other classical ensembles were similarly
performed, for instance for the β-Laguerre ensemble [11], for the β-Jacobi ensemble and for
β-circular ensembles [16–18].

The β-HE also facilitates the study of the distribution of the determinant DN of N × N

matrices. The probability densities of random determinants is too a question of physical
interest [19–25]. Within the log-gas interpretation, the potential at the origin is −ln|DN |
which is a linear statistic as are physical quantities expressed as sums F = ∑N

k=1 f (λk)

over the eigenvalues λk of a random matrix. General arguments and proofs predict that the
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distribution of any linear statistic is Gaussian and independent of the confining potential in the
scaled asymptotic limit N → ∞ provided its fluctuation is finite [3, 26, 27]. This leads quite
naturally to an asymptotic lognormal distribution of the determinant, when N → ∞ for a
fixed value of β, as shown for the GXE (X = O,U). The lognormal distribution is a typical and
robust asymptotic distribution of products of random variables which holds for rather loose
conditions on these variables. However, the standard-deviation of the Gaussian distribution
of −ln|DN | is not here proportional to

√
N as usual, for instance when DN is a product of

iid variables, but to
√

ln N as a consequence of the repulsion between eigenvalues. The study
of the determinant distribution is thus a way to probe the global fluctuation properties of the
spectrum as stressed for linear statistics [26, 27].

1.3. Aims

The first aim of this paper is to define a fixed-trace β-Hermite (β-FTH) ensemble, a member of a
family that was first defined by Rosenzweig and Bronk [28, 29] and bears the same relationship
to Gaussian ensembles that the microcanonical ensembles to the canonical ensembles in
statistical physics [30]. A fixed-trace ensemble, with a given symmetry, is constrained to
have tr

(
HNH+

N

) = constant, where the matrix H+
N is the Hermitian conjugate of HN and the

constant is taken here as 1 without loss of generality. Fixed-trace ensembles were recently
investigated [31–33] in particular in relation to spherical random matrix ensembles [33–37],
whose probability densities are solely functions of tr

(
HNH+

N

)
. Further, generalized random

matrix ensembles belonging to the latter class were deduced from the use of a maximum
entropy principle based on a non-extensive q-entropy [36, 37].

The second aim is to study the asymptotic distribution of the determinant DN,β of a β-H
matrix at low temperature, that is when β → ∞ for a fixed value of N. The potential at
the origin, −ln|DN,β |, is further a sum of correlated random variables (equation (1)). The
asymptotic distributions of sums of correlated random variables are a fundamental question in
statistical physics [38–42]. The asymptotic joint distribution of the β-H matrix eigenvalues,
when β → ∞ for a fixed value of N, is a multivariate Gaussian distribution with a rather
complicated covariance matrix [12, 43, 44] (see section 2.2). The asymptotic determinant
distribution shall be obtained here, together with its mean and variance, by a simple inductive
reasoning which does not rely explicitly on the previous multivariate Gaussian distribution.

The β-Hermite ensemble and the fixed-trace β-Hermite ensemble shall be defined and
some of their characteristics discussed in sections 2 and 3, respectively. The low-temperature
determinant distributions for both ensembles shall be discussed in section 4.

2. The β-Hermite ensemble of Dumitriu and Edelman [11]

2.1. Definition

Random matrices from the β-HE, with a density of eigenvalues given by equation (1) whatever
β, are tridiagonal symmetric real matrices whose elements are distributed in the following
way [11]:

AN,β = σHN,β = σ




H11 H12/
√

2 0 · 0

H12/
√

2 H22 H23/
√

2 0 ·
0 H23/

√
2 · · 0

· 0 · HN−1,N−1 HN−1,N/
√

2

0 · 0 HN−1,N/
√

2 HNN




. (2)
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The 2N − 1 distinct matrix elements, namely Akk = σHkk(k = 1, . . . , N) and Ak,k+1 =
σHk,k+1/

√
2 (k = 1, . . . , N − 1) are independently but not identically distributed and σ is a

scale factor. Every Hkk has a N(0, 1) Gaussian distribution while the off-diagonal element
Hk,k+1 (k = 1, . . . , N − 1) has a chi distribution with kβ degrees of freedom:

PN,β(x = Hk,k+1) = xkβ−1 exp
(− x2

2

)
2kβ/2−1�

(
kβ

2

) (Hk,k+1 � 0). (3)

It follows immediately that tr
(
H2

N,β

)
, a sum of independent chi-square random variables, has

a chi-square distribution with Nρ degrees of freedom whatever β.
The β-Hermite ensemble is particularly suited for efficient numerical simulations of its

various characteristics with computer times essentially independent of β. We performed
Monte Carlo calculations in Fortran with a standard laptop computer to simulate β-H matrices
(times of 0.03 s and 0.12 s were for instance needed to build and to diagonalize a 200 ×
200 matrix and a 400 × 400 matrix respectively). Gaussian variables were generated by
the polar Box–Muller method [45]. The chi distributions of the non-diagonal elements were
generated through gamma distributions. Ghosh et al [46] describe Monte Carlo and Langevin
methods to generate numerically non-Gaussian ensembles from the 2D Coulomb gas described
in section 1.2 with a confining potential V. Charges are moved stochastically on a line until
an equilibrium is reached. Their method generates the β-HE when V is chosen to be an
harmonic potential. In the latter case, it is preferable however to use the tridiagonal ensemble
of Dumitriu and Edelman.

2.2. Eigenvalue density of a β-HE N × N tridiagonal matrix when β → ∞ [12]

When β → ∞, the off-diagonal element Hk,k+1 can be written as
√

kβ + X√
2
, where X is a

N(0, 1) Gaussian so that HN,β (equation (2)), scaled by 1√
2Nβ

, becomes [12]

H(s)
N,β = HN,β/

√
2Nβ

= 1√
2N

H(a)
N +

1√
2Nβ




Z1 ZN+1 0 · 0
ZN+1 Z2 ZN+2 0 ·

0 ZN+2 · · 0
· 0 · ZN−1 Z2N−1

0 · 0 Z2N−1 ZN


 . (4)

where ZN = (Z1, . . . , ZN,ZN+1, . . . , Z 2N−1
) is a vector whose components Zk are standard

N(0, 1) Gaussians for k � N and N (0, 1/4) Gaussians for k > N . When β → ∞, the
ordered eigenvalues λN,i(1 � i � N) of H(s)

N,β are such that

√
β

(
λN,1 − xN,1√

2N
, λN,2 − xN,2√

2N
, . . . , λN,N − xN,N√

2N

)
→ G√

2N
(5)

where the xN,i are the ordered roots of the Hermite polynomial, HN(xN,i) = 0, and
G = (G1,G2, . . . ,GN) is a vector of Gaussian variables whose means are zero. The Hermite
polynomial HN(λ) is classically defined by [55, 56]∫ +∞

−∞
exp(−λ2)HN(λ)HM(λ) dλ = √

π2NN !δNM (6)
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with a positive coefficient of λN while ĤN(λ) = 1
(
√

π2NN!)1/2 HN(λ) is an orthonormal Hermite
polynomial (equation (7)). The elements of the covariance matrix are rather involved and
given by [12]

〈GiGj 〉=
∑N−1

k=0 Ĥ 2
k(xN,i)Ĥ

2
k(xN,j ) +

∑N−2
k=0 Ĥ k+1(xN,i)Ĥ k(xN,i)Ĥ k+1(xN,j )Ĥ k(xN,j )(∑N−1

k=0 Ĥ 2
k(xN,i)

)(∑N−1
K=0 Ĥ 2

k(xN,j )
) . (7)

The asymptotic density of eigenvalues is finally obtained as a sum of Gaussians [12]. The
eigenvalues of the covariance matrix (equation (8)) are 1

k
(k = 1, . . . , N), as found too from

equation (11) of [43]. The covariance matrix described above is indeed proportional to −C−1

(the elements of the matrix C are simple and given by equations (6) and (7) of [43]). Andersen
et al [43] derived the multivariate Gaussian distribution of the eigenvalues by expanding the
logarithm of the multivariate probability (equation (1) with σ 2 = 1

βN
) in the vicinity of its

maximum to describe the normal modes of the eigenvalue spectrum. The most probable
fluctuation in the spectrum corresponds to a common shift of all charges, without change in
their relative separation, which reflects the spectral rigidity [43]. Andersen et al showed that
the next most probable mode is a breathing mode.

2.3. Determinant distribution of the β-HE

General expressions for the distribution of the determinant DN,β of a N × N β-H matrix and
for its Mellin transform are lacking for an arbitrary value of β. The asymptotic determinant
distribution for β fixed and N → ∞ is expected to be lognormal as ln|DN,β | is a linear
statistics (section 1.2, figure 5(a) with β = 2). Exact determinant distributions P(DN,β)

were established previously only for Gaussian ensembles, with β = 0, 1, 2, with N odd when
β = 1 [21, 22].

3. The fixed trace β-Hermite ensemble

3.1. Definition

We define quite naturally the associated fixed-trace β-Hermite ensemble as the ensemble of
matrices:


FN,β =




F11 F12/
√

2 0 · 0

F12/
√

2 F22 F23/
√

2 0 ·
0 F23/

√
2 · · 0

· 0 · FN−1,N−1 FN−1,N/
√

2

0 · 0 FN−1,N/
√

2 FNN


 .

Fij = Hij

/√
tr
(
H2

N,β

)
, tr
(
F2

N,β

) = 1

(8)

As explained in section 1.3, for a given symmetry, a fixed-trace ensemble is defined by the sole
condition that tr

(
HNH+

N

) = constant taken here as 1. For convenience, the matrix elements
will be equally denoted hereafter as Fi (i = 1, . . . , 2N − 1) with{

Fi = Fii, FN+i = Fi,i+1

−1 � Fi � 1 if i � N 0 � Fi � 1 if i > N.
(9)

The vector SN,β collects the squares of the distinct elements of HN,β (equation (2)):

Sk = H 2
kk, (k = 1, . . . , N), SN+k = H 2

k,k+1, (k = 1, . . . , N − 1). (10)
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They are by definition of the β-HE (section 2.1) chi-square distributed with respective degrees
of freedom: {

ν1 = 1, ν2 = 1, . . . , νk = 1, . . . , νN = 1

νN+1 = β, νN+2 = 2β, . . . , νN+k = kβ, . . . , ν2N−1 = (N − 1)β.
(11)

The distribution of the vector VN,β = SN,β

/
tr
(
H2

N,β

)
is thus a Dirichlet distribution [49, 50].

When Sk , k = 1, . . . , 2N − 1, are independent random variables distributed as χ2
νk

,

k = 1, . . . , 2N − 1, then the joint distribution of Vj = Sj

/∑2N−1
k=1 Sk, j = 1, . . . , 2N − 2 is

[49, 50] 


p(V1, . . . , V2N−2) = �(Nρ/2)

πN/2
[∏N−1

k=1 �(kρ)
] ×

2N−1∏
i=1

V
νi/2−1
i

Vj � 0, j = 1, . . . , 2N − 1,
∑2N−1

j=1 Vj = 1

(12)

from which the joint distribution of the nonzero elements Fij , which takes into account
the symmetry of the marginal distributions of the diagonal elements (−1 � Fii � 1,

i = 1, . . . , N), is finally derived for N > 2:


p(F11, . . . , Fkk, . . . , FNN, F12, . . . , Fk,k+1, . . . , FN−2,N−1)

= 2N−2�(Nρ/2)

πN/2
[∏N−1

k=1 �(kβ/2)
] ×

(
N−2∏
k=1

F
kβ−1
k,k+1

)
×
(

1 −
N∑

k=1

F 2
kk −

N−2∑
k=1

F 2
k,k+1

)(N−1)β/2−1

−1 � Fkk � 1, k = 1, . . . , N; 0 � Fk,k+1 � 1, k = 1, . . . , N − 1.

(13)

For N = 2,

p(F11, F22) = ρ
(
1 − F 2

11 − F 2
22

)ρ−1

π
. (14)

The joint distribution of any set of m elements (m � 2N − 2) Fi1 , . . . , Fik , . . . , Fim , chosen
among the 2N − 1 distinct matrix elements of FN,β , is simply obtained from the amalgamation
property of the Dirichlet distribution [49, p 19]. Denoting by md the number of indices
ik � N(k = 1, . . . , m), we order the m elements so that the md diagonal elements are the first.
Let the degrees of freedom (equation (12)) associated with the m corresponding components
of SN,β (equation (11)), Sik (k = 1, . . . , m), and their sum be

νi1 , νi2 , . . . , νim, νim+1 = Nρ −
m∑

k=1

νik . (15)

Further, the 2N − m − 1 remaining components of SN,β , are summed up in a component Sim+1

with νim+1(m) degrees of freedom. Then, the amalgamated vector Vm+1,β


Sm+1,β =

Si1 , Si2 , . . . , Sim, Sim+1 =

2N−1∑
ik=m+1

Sik




Vm+1,β = Sm+1,β

/
tr
(
H2

N,β

) (16)

has a Dirichlet distribution whose parameters are defined by equation (16). The sought-after
joint distribution is finally



p(Fi1 , . . . , Fik , . . . , Fim)

= 2m−md �(Nρ/2)∏m+1
ik=1 �(νik /2)

×

 m∏

ik=md +1

F
νik

−1
ik


×


1 −

m∑
ik=1

F 2
ik




νim+1 /2−1

−1 � Fik � 1, ik = 1, . . . , md; 0 � Fik � 1, ik = md + 1, . . . , m

(17)
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(a)

(b)

Figure 1. Eigenvalue densities p(λ) (a) of 5 × 5 β-Hermite matrices and (b) of 5 × 5 β-fixed
trace Hermite matrices, as a function of β from Monte Carlo simulations with 107 matrices. In
both cases, 〈λ2〉β = 0.25 and the left peaks correspond, from bottom to top, to β = 1 (solid line,
full triangles), β = 1.5 (solid line), β = 2 (solid line, crosses), β = 4 (solid line, full circles) and
β = 6.5 (solid line).

where the left bracketed factor is taken as 1 if md = m. Equations (9), (12), (14) and (17)
define completely the distribution of the elements of matrices from the fixed-trace β-Hermite
ensemble. The marginal distribution of the distinct matrix elements and the distribution of the
trace are further discussed in appendix A.

As the Fij ’s, whose marginal distributions are given by equations (A.1) and (A.2)
(appendix A), are not independently distributed, the simplest method to perform efficient
numerical simulations of β-FTH matrices is based on the use of their definition

Fij = Hij

/√
tr
(
H2

N,β

)
(section 2.1). Figure 1 compares some eigenvalue densities of 5 × 5

β-H and β-FTH matrices when β increases and evidences clearly the smoothing effect
originating from equation (19) given below. These densities are easier to understand in the
electrostatic interpretation with charges confined more and more strongly around the positions
of the zeroes of the Hermite polynomials when the temperature decreases ([1, 12, 43] and
section 2.2).

3.2. Eigenvalue densities of β-spherical ensembles

The fixed-trace β-FTHE is then used to define β-spherical (β-S) ensembles of random matrices,
whose probability density, g

(
tr
(
H2

N,β

))
, depends only on tr

(
H2

N,β

)
. The characteristics of any
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Figure 2. Eigenvalue densities of 5 × 5 β-fixed trace Hermite matrices (β-FT, dotted line) and
of 5 × 5 β-Hermite matrices (β-HE, solid line) from Monte Carlo simulations with 107 matrices;
here β = 150 and 〈λ2〉 = 0.25.

β-spherical (β-S) ensemble can simply be calculated from those of the β-FTHE by a 1D

integration over r = σ

√
tr
(
H2

N,β

)
as done in [24, 31–37]. The density of eigenvalues of

a β-spherical ensemble, pβ−S,N (λ), is related to that of the β-FTHE by equation (2.22) of
Delannay and Le Caër [32]. The latter equation, which was solely applied to the cases β = 1,
2, remains indeed valid whatever β:


pβ-S,N (λ) =

∫ ∞

|λ|

f (r)

r
pβ-FT H,N

(
λ

r

)
dr

f (r) ∝ rNρ−1g(r2)

(18)

where pβ-FT H,N(λ) is the eigenvalue density of the β-FTHE with tr
(
H2

N,β

) = 1. When the
considered spherical ensemble is the Gaussian β-HE, the chi distribution with Nρ degrees of
freedom of r/σ yields


pβ-H,N(λ) = CN,β

∫ ∞

|λ|
rNρ−2 exp

(
− r2

2σ 2

)
pβ-FT H,N

(
λ

r

)
dr

CN,β = 1

2Nρ/2−1σNρ �
(Nρ

2

) . (19)

The density of the β-FTHE might in principle be obtained from that of the β-HE via an
inverse one-dimensional Laplace transform as described by equations (3.7) and (3.9) of [32]
for β = 1, 2. The second moment of the β-H eigenvalue distribution is directly found from
the chi-square distribution of z = tr

(
H2

N,β

)
to be 〈λ2〉β−H = σ 2

(
1 + (N−1)β

2

)
from which a

thermodynamic limit is obtained when σ scales as σ ∝ 1√
βN

. As the ratio
√

〈(z−〈z〉)2〉
〈z〉 ∝ 1

N
√

β

tends to zero for large βN2, the β-HE tends then to the β-FTHE (figure 2) with a radius

of the associated sphere r = σ

√
tr
(
H2

N,β

) ∝ √
N . When β → ∞ for a fixed value of

N, the eigenvalue distribution of the β-FTHE is multivariate normal as is that of the β-HE
(section 2.2). A relation between the determinant densities of β-H and β-FTH matrices is
further given in section 4. Some supplementary characteristics of 2 × 2 β-H and β-FTH
matrices are given in appendix B.
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4. Determinant distributions

The probability density P(DN,β) of the determinant DN,β of N × N β-Hermite matrices is
symmetric when N = 2p + 1. Indeed, the odd moments, calculated from equation (1) verify

〈(λ1λ2 · · · λ2p+1)
2q+1〉 = (−1)(2p+1)(2q+1) 〈(λ1λ2 · · · λ2p+1)

2q+1〉 = 0 (20)

whatever β as shown by changing λj into −λj (j = 1, . . . , 2p + 1). When the mean of a
random variable 〈X〉 differs from zero, the central moments about the mean will be denoted
hereafter by 〈Xk〉c = 〈(X − 〈X〉)k〉.

4.1. β-Hermite ensemble

At low temperature, β → ∞, for N fixed, the eigenvalue distribution tends to a multivariate
Gaussian distribution (equation (5)) and the determinant distribution becomes that of a product
of correlated Gaussian variables (equation (7)). A product of Gaussian variables may, in some
conditions, be approximately Gaussian as discussed in appendix C for independent variables.
However, these conditions and the mean and variance are harder to derive for the correlated
Gaussian variables considered here as further the covariance matrix is rather complex
(equation (7)). We therefore derive the sought-after distribution by induction without relying
on the previous multivariate distribution.

4.1.1. Low-temperature behaviour of DN,β when β → ∞ for fixed N. For N � 3 and σ = 1,
equation (2) shows that

DN,β = HNNDN−1,β − H 2
N−1,NDN−2,β

2
. (21)

All moments of the determinant of a β-H matrix are therefore integer coefficients polynomials
in ρ = β/2 [11]. This stems from the moments of an N(0, 1) distribution which are integers
and those of the involved chi-square distributions which are polynomials in ρ with integer
coefficients: 〈(

χ2
kβ

2

)n〉
= kρ(kρ + 1) · · · (kρ + n − 1). (22)

For large ρ, it suffices thus to obtain their term of highest degree. As shown earlier
(equation (20))

〈
D

2q+1
2p+1,β

〉 = 0. In equation (21), DN−1,β and DN−2,β are not independent
but DN−1,β is independent of HNN and DN−2,β is independent of HN−1,N . Then

〈D2p,β〉 = −ρ(2p − 1)〈D2p−2,β〉 = (−1)p(2p − 1)!!ρp. (23)

The latter result is alternatively obtained from the product of the roots of the Hermite
polynomial H2p(x). The leading terms of the variance of DN,β are derived from the previous
equations. Equation (21) yields〈

D2
N,β

〉 = 〈D2
N−1,β

〉
+ ρ(N − 1)(1 + ρ(N − 1))

〈
D2

N−2,β

〉
(24)

equation (24) and the exact values of
〈
D2

2,β

〉 = 1 + ρ + ρ2 and of
〈
D2

3,β

〉 = 1 + 3ρ + 5ρ2

(appendices C and D) show that
〈
D2

N,β

〉
is a polynomial of the form

〈
D2

N,β

〉 = 1 +
2�N/2�∑

i=1

ai(N)ρi. (25)



1570 G Le Caër and R Delannay

(a)

(b)

Figure 3. Distribution of the scaled and centred determinant of N × N β-Hermite matrices as a
function of β from Monte Carlo simulations with 107 matrices (dotted lines = N(0, 1) distribution,

1√
2π

exp(− d2
N,β

2 )): (a) d2,β = (D2,β + ρ)/
√

1 + ρ; β decreases from top to bottom at d2,β ≈ 0.5;

(b) d8,β = {D8,β − 〈D8,β 〉}/
√

〈D2
8,β 〉c; β decreases from top to bottom at d8,β ≈ −0.5.

When N is even, it is then straightforward to find that

〈
D2

2p,β

〉
c
= ((2p − 1)!!)2

{
p−1∑
k=0

1

2k + 1

}
ρ2p−1 + · · · . (26)

When N is odd, the asymptotic variance is obtained as

〈
D2

2p+1,β

〉 = 4p(p!)2

{
p∑

k=0

(
2k

k

)2
/

24k

}
ρ2p + · · · . (27)

We define

S2
2p =

p−1∑
k=0

1

2k + 1
S2

2p+1 =
p∑

k=0

(
2k

k

)2/
24k. (28)

A reduced determinant is finally obtained for any value of σ and of N as

dN,β = DN,β − 〈DN,β〉
(N − 1)!!σNρ(N−1)/2SN

. (29)

For large ρ, d2,β (figure 3(a)) and d3,β are proven to be asymptotically N(0, 1) Gaussians
in appendices C and D. To simplify the notations in the derivation by induction of the low
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temperature distribution of dN,β for fixed N and for large ρ, we define yN = dN,β for N � 3
and σ = 1 and we drop β when possible. Depending on the parity of N, the averages of yN are
〈y2p+1〉 = 0 and 〈y2p〉 = (−1)p

√
ρ/S2p respectively. The recurrence relation (equation (21))

reads then

yN = εNX1
yN−1√

ρ
− αN

(
χ2

(N−1)β

2

)
× yN−2

ρ(N − 1)
− 〈dN 〉 (30)

where X1, χ
2
(N−1)β have respectively an N(0, 1) Gaussian and a chi-square distribution with

(N − 1)β degrees of freedom and

εN =
(

SN−1

SN

)
×
(

(N − 2)!!

(N − 1)!!

)
αN = SN−2

SN

. (31)

Assuming that yN−1, yN−2 are asymptotically N(0, 1) Gaussians but nothing about their
bivariate distribution P(yN−1, yN−2) as these two variables are correlated, we calculate the
asymptotic distribution of yN . For that purpose, we derive first the asymptotic characteristic
function of yN , namely limβ→∞〈exp(ityN)〉. From equation (30) we get

�N(t) =
∫ +∞

−∞

∫ +∞

−∞
exp

(
− t2ε2

Ny2
N−1

2ρ

)(
1 + it

αNyN−2

ρ(N − 1)

)−ρ(N−1)

× exp(−it〈yN 〉)P (yN−1, yN−2) dyN−1 dyN−2. (32)

When N is even: N = 2p. The first exponential in the integrand of equation (32) tends to 1
when β → ∞ as y2

N−1 ∼ 1. Similarly, y2
N−2 ∼ ρ

SN−2
. Developing the second factor in the

integrand equation (32), with zN−2 = yN−2 + (−1)N/2√ρ/SN−2, where zN−2 is N(0, 1), we
obtain

�N(t) = exp

(
−S2

N−2t
2

2S2
N

− t2

2(N − 1)S2
N

)
= exp

(
− t2

2

)
. (33)

When β → ∞ with N fixed, the low-temperature distribution of d2p,β = D2p,β−〈D2p,β 〉
(2p−1)!!ρ(2p−1)/2S2p

is thus an N(0, 1) Gaussian if the asymptotic distributions of d2p−2,β and that of d2p−1,β are
N(0, 1) Gaussians.

When N is odd: N = 2p + 1. As done previously, we replace y2
N−1 in equation (32) by ρ

S2
N−1

.

Developing the second term gives exp
(−itαNyN−2 − t2α2

N y2
N−2

2ρ(N−1)

)
. Replacing y2

N−2 by 1 yields
finally

�N(t) = exp

(
− t2

2
×
{

1

S2
N

(
(N − 2)!!

(N − 1)!!

)2

+
S2

N−2

S2
N

})
= exp

(
− t2

2

)
. (34)

When β → ∞ with N fixed, the low-temperature distribution of d2p+1,β = D2p+1,β

(2p)!!ρpS2p+1
is thus

a N(0, 1) Gaussian provided that the asymptotic distributions of d2p−1,β and that of d2p,β are
N(0, 1) Gaussians.

As the asymptotic distributions of d2,β and d3,β are N(0, 1) Gaussians (appendices C
and D), the low-temperature distribution of the reduced determinant (equation (29)) is, for N
fixed and β → ∞:

P(dN,β) = exp
(−d2

N,β

/
2
)

√
2π

. (35)
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(a)

(b)

Figure 4. Distribution (points) of the scaled determinant d19,β = D19,β/
√

〈D2
19,β 〉 of 19 × 19

β-Hermite matrices from Monte Carlo simulations with 107 matrices (a) for β = 100, (b) for
β = 1000 (a vertical log-scale has been used to enhance the resolution in the tails, solid lines =
N(0, 1) distributions, − log(2π)+d2

19,β

2 ).

The results of numerical simulations, with 107 to 105 matrices according to N (examples are
shown in figures 3 and 4), N varying from 2 to 401 and a typical value β = 1000, are in
excellent agreement with equation (35).

A Gaussian shape N(0, σ 2), with σ 2 �= 1, is observed to be a good approximation of the
determinant distribution for N = 2p + 1 even for moderate values of β (figure 4(a)). The rate
of convergence to the asymptotic distribution remains to be determined as a function of N. It
is expected to be slower for even values of N as the odd moments are not zero. A condition
on β and N is however discussed below for N even.

As for large k,
(2k

k

)2/
24k ∼ 1

πk
, the large N values of SN are obtained from


S2

2p ≈ 1

2
ln(N) +

γ + ln 2 − 2

2

S2
2p+1 ≈ ln(N)

π
− 0.1512

(36)

where γ is the Euler constant. For large N and large ρ, equations (26), (27) and (36)
yield a standard-deviation of the determinant which behaves as ≈(ρN)N/2 exp

(−N
2

)√
ln(N).

Therefore, a scaling of the elements of a β-H matrix ∝(ρN)1/2, in agreement with
section 2.2, leaves a variance of the determinant ∝ln(N). The latter variance is a direct
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consequence of the highly correlated fluctuations of the charge positions as analysed via
normal modes by Andersen et al [43].

4.1.2. The generalized Gumbel distribution of ln|dN,β | at low temperature. The asymptotic
lognormal distribution discussed in section 1.2, for β fixed and N → ∞, is, in some conditions,
compatible with the previous asymptotic normal distribution equation (48). Indeed, when N
is large, N = 2p, the logarithm of

∣∣ D2p,β

〈D2p,β 〉
∣∣ can be written as (equation (29))

ln

∣∣∣∣∣ D2p,β〈
D2p,β

〉
∣∣∣∣∣ = ln

∣∣∣∣∣1 + (−1)p

√
ln N

β
d2p,β

∣∣∣∣∣ ≈ (−1)p

√
ln N

β
d2p,β if β � ln N. (37)

Equation (37) shows that the Gaussian behaviour is recovered at low enough temperatures and
with a variance varying as ln(N). The latter result was proven from the exact determinant
distributions for β = 1, 2 [22]. At infinite temperature, β = 0, the variance is ∝ N [22].
Indeed, it is found, using the values of K1 and K2 given by equation (E.4) and the Gumbel
distribution discussed below (equation (41)), that

ln|DN,0| − N(ln σ − (γ + ln 2))/2)

πN1/2/2
√

2
(38)

has an N(0, 1) distribution when N → ∞. In equation (38), γ is the Euler constant and σ is
defined in equation (1).

The Gaussian distribution is not only the limit of the lognormal distribution of the
determinant of large matrices at low temperature but it is valid whatever N, in particular
for small N values for which the latter distribution is irrelevant. As a product of Gaussian
variables may be normal in some conditions (see appendix B for the case of independent
variables), the overall low-temperature behaviour seems thus to be accounted for in simple
terms. However, the observation of a rather atypical distribution for a product of random
variables, even correlated, might call for a more general explanation and the correlation
structure of the eigenvalues must be looked at more closely as a function of temperature. A
generalized Gumbel distribution has the following density (a > 0) [38–42]:

ga,θ,s(x) = aa|θ |
�(a)

exp(a{θ(x − s) − exp(θ(x − s))}). (39)

The parameter θ is found hereafter to be positive. In their investigation of decaying Burgers
turbulence, Noullez and Pinton [40] concluded that the parameter a plays the same role as
the number of degrees of freedom in the chi-square distribution. There is indeed a direct link
between the generalized Gumbel distribution (equation (39)) and the chi-square distribution
with 2a degrees of freedom, the latter being in fact the distribution of y = 2a exp(θ(x − s)).
Equivalently z = √

2a exp
(

θ(x−s)

2

)
has a chi distribution with 2a degrees of freedom:

p2a(z) = z2a−1

2a−1�(a)
exp

(
−z2

2

)
. (40)

The distribution of the logarithm of the absolute value of a standard Gaussian variable,
x = ln(|N(0, 1)|), is thus a generalized Gumbel distribution:

g1/2,2,0(x) =
√

2

π
exp

(
x − 1

2
exp(2x)

)
. (41)

Some characteristics of the generalized Gumbel distribution are further discussed in appendix
E. The low-temperature distribution P(x) of x = ln(|dN,β |), which is minus the electrostatic



1574 G Le Caër and R Delannay

(a)

(b)

Figure 5. Distribution P(x) of x = ln(|d201,β |) for 201 × 201 β-Hermite matrices as a function

of β from Monte Carlo simulations with 5 × 105 matrices (d201,β = D201,β/
√

〈D2
201,β 〉, solid

lines = least-squares fits with generalized Gumbel distributions, ga,θ,s (x) (equation (A.4)) whose
parameters are shown in figure 7).

potential at the origin, is then g1/2,2,0(x) whatever N. Figures 5–7 show the evolution of the
distribution P(x), for N = 201, from a normal distribution to g1/2,2,0(x) and that of some of its
characteristics. All distributions of figure 5 were fitted with a generalized Gumbel distribution
(equation (39)). Excellent least-squares fits are obtained for β >∼ 20 (figure 5(b)). Fair
fits are still obtained for smaller values of β (figure 5(a)). The fitted parameters are such
that a(β) ∼ 1

θ(β)
(figure 7). Figures 6 and 7 show that the parameters change rapidly when

β increases up to ∼ 50, a value indeed small as compared to ln N = 5.303 and then rather
slowly.

The generalized Gumbel distribution (equation (39)) is the asymptotic distribution of
the extreme values of sequences correlated over a ‘distance’ 1/a [41]. The problem we are
considering here is not an extreme value problem but Bertin and Clusel showed recently [42]
that it is possible to obtain the generalized Gumbel distribution as the asymptotic distribution
of sums of independent non-identically distributed random variables or of correlated random
variables belonging to broad classes which do not satisfy the conditions of validity of the central
limit theorem. The parameter a quantifies their correlation structure [42]. For a physical
example they consider that of a 1D lattice with L sites and a continuous variable on each site,
a is for instance the ratio of the correlation length to the system size L. It is thus relevant to
look here at the linear correlations between the ordered eigenvalues (λ1 � λ2 · · · � λN)
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Figure 6. Normalized coefficient of excess γ2n(β) = γ2(β)
γ2(∞)

(empty diamonds) and normalized

skewness γ1n(β) = γ1(β)
γ1(∞)

(empty circles) of the distributions P(x) of figure 5 as a function of
β (γ1(∞) = 4 and γ2(∞) ≈ −1.5351 (appendix E)). Both γ1n and γ2n are zero when P(x) is a
Gaussian.

Figure 7. Parameters 1/a(β) (crosses) and θ(β) (empty circles) of the generalized Gumbel
distribution ga,θ,s (x) used to fit the distributions P(x) of figure 5 (a(∞) = 0.5 and θ(∞) = 2
(appendix E), θ is zero when P(x) is a Gaussian).

and between (ln(|λ1|), . . . , ln(|λN |)). The linear correlation coefficient between λj and
λk is 


λ1 � λ2 � · · · � λN

ρc(j, k) = [〈λjλk〉 − 〈λj 〉 〈λk〉]/(σjσk)

σ 2
m = 〈λ2

m

〉− 〈λm〉2.

(42)

The correlation coefficients ρc(j, k) do not depend sensitively on β when β � 1. Figure 8
exemplifies it by showing the variation of ρc(1, k) with (λk − λ1)/(λN − λ1) for β = 1 and
for β infinite (figure 8(a)). The correlation coefficients between ln(|λ1|) and ln(|λk|) decrease
more strongly with k than the ρc(1, k)‘s and their temperature dependences are also very
weak. The random variables xj (j = 1, . . . , N), which result from an ordering process
of N independent realizations of a Gaussian distribution N(0, σ 2), appear as more strongly
correlated, with a broader reach, than are the previous ordered eigenvalues (figure 8(b)). The
xj ’s have different distributions but the central limit theorem holds obviously for ln

(∏N
k=1 |xk|

)
when N → ∞ as it is actually a sum over iid lognormal random variables. This example
emphasizes, as do Bertin and Clusel [42], the difficulty to draw a general conclusion about
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(a)

(b)

Figure 8. Correlation coefficient ρc(1, k) between the smallest element λ1 and the remaining
elements λk(k = 2, . . . , 101) of a set of N = 101 ordered values as a function of (λk−λ1)/(λN −λ1):
(a) the λj ‘s are the eigenvalues of 101 × 101 β-Hermite matrices (solid line and empty squares:
β infinite, ρc(1, k) calculated from equation (11), dotted line and empty circles: β = 1, ρc(1, k)

calculated from Monte Carlo simulations with 106 matrices); (b) the λj ‘s are taken as the ordered
elements xj‘s (j = 1, . . . , N) obtained by drawing a random sample of N = 101 values from a
Gaussian distribution N(0, σ 2) (the dotted line is calculated from Monte Carlo simulations with
2 × 106 realizations).

the asymptotic behaviour of a sum of non-independent and non-identically distributed random
variables. The sole knowledge of the range of their correlation coefficients may in some cases
be of little help. To capture the global evolution, figure 9 presents various distributions P(|ρc|)
of the absolute value of the N(N − 1)/2 correlation coefficients ρc(j, k), noted ρc for brevity.
Although the distribution of the correlation coefficient ρc between the eigenvalues differs from
that between the logarithms of their absolute values, the associated distributions P(|ρc|) are
essentially indistinguishable. Figure 9(a) depicts the weak temperature dependence of the
global correlation structure for N fixed, N = 400. Finally, figure 9(b) shows the evolution
with N of P(|ρc|) for β = 1. When N increases, the distribution becomes broader and flatter
and moves progressively towards the distribution found for ordered variables from Gaussian
realisations.

To conclude, we failed to evidence a significant temperature dependence of the correlation
structure for a fixed N. It might have accounted for the progressive evolution of the
distribution of x = ln(|dN,β |) from a normal distribution to a generalized Gumbel distribution
g1/2,2,0(x), through distributions which are very well approximated too by generalized
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(a)

(b)

Figure 9. Distribution P(|ρc|) of the absolute value |ρc| of the correlation coefficient between the
ordered eigenvalues of N × N β-Hermite matrices: (a) as a function of β for N = 400, (b) as
a function of N for β = 1 (distributions P(|ρc|) are further shown for ordered values of sets of
N = 2000 iid Gaussian variables).

Gumbel distributions ga,θ,s(x), when the temperature decreases. The low-temperature normal
distribution of the reduced determinant is at that point concluded to be simply the limiting
behaviour of a product of correlated Gaussian variables.

4.2. Fixed-trace β-Hermite ensemble

As the maximum of
∏N

k=1 |λk| subject to the constraint
∑N

k=1 λ2
k = 1 is N

−N/2
we define first

a scaled β-FTH’s determinant DN,β :

DN,β = NN/2

[
N∏

k=1

λk

]
(43)

so that the determinant density of the β-FTHE is

P F (DN,β) = 0 for |DN,β | � 1 (44)

whatever N . The distribution P F (D2,β) is given in appendix C. The relation that we obtained
between the determinant distributions of the Gaussian ensembles (β = 1, 2) (equation (15) of
[24]) and those of the associated fixed-trace ensembles is still appropriate for the β-Hermite
ensemble. Indeed, it is solely based on the chi-square distribution of tr

(
H2

N,β

)
(section 2.1).
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The distribution P(DN,β) of the determinant of the β-Hermite ensemble is then related to
P F (DN,β) by [24]

P(DN,β) = 1

2
Nρ

2 −1σNρ �
(Nρ

2

)
∫ ∞

|DN,β | 1
N

P F

(
DN,β

rN

)
rNρ−N−1 exp

(
− r2

2σ 2

)
dr. (45)

A relation between the Mellin transforms of the determinant distributions, valid whatever β,
can be derived from equation (45) as done for equations (17) and (A.3) of [24] for β = 1,
2. The moments of the distribution of the determinant of a β-FTH matrix (equation (43)) are
then related to those of the determinant of a β-H matrix by

〈
Dk

N,β

〉
β-FT H

= 〈Dk
N,β

〉
β-H ×

(
N

2

) Nk
2

× �(Nρ/2)

�(Nρ/2 + Nk/2)
. (46)

As the β-HE tends to the β-FTHE for large βN2 (section 3.2), the determinant of a β-FTH
matrix should behave at low temperature as that a β-H matrix. For simplicity, we show it
only for N odd, N = 2p + 1. Indeed,

〈
D2k

2p+1,β

〉
β−H

= (2k − 1)!!σ 2k
β−H,∞ for large β, where

σ 2
β−H,∞ = [(N −1)!!]2S2

NρN−1 is the asymptotic variance obtained from equation (29). Then:

〈
D2k

N,β

〉
β-FT H

= (2k − 1)!!

(
σβ−H,∞

(ρ(N − 1))N/2

)2k

. (47)

Equation (47) yields a reduced determinant whose asymptotic distribution is a N(0, 1)

Gaussian:

dN,β = (N(N − 1))N/2√ρ

(N − 1)!!SN

[
N∏

k=1

λk

]
. (48)

Results of numerical simulations are in excellent agreement with equation (48). A similar
calculation can be performed for N even (N � 4) with a nonzero scaled average 〈d2p,β〉 =
(−1)p

√
ρ

S2p
. As expected, a ln(N) variance is obtained from equation (48) for large N.

5. Conclusions

To conclude, the β-Hermite ensemble of tridiagonal N × N random matrices of Dumitriu and
Edelman [11] is a continuum of ensembles which facilitates the exploration of the spectral
properties in the whole temperature range among others thanks to the numerical efficiency
it brings. A fixed-trace β-Hermite ensemble is defined from the β-Hermite ensemble and is
used to extend spherical ensembles of classical symmetries to β-spherical ensembles.

When β → ∞ for a fixed value of N, the low-temperature distribution of the unscaled
determinant of a random β-Hermite matrix and that of a random β-fixed trace Hermite matrix
are Gaussians whose variances are determined. The low temperature Gaussian distribution
is actually that of the product of eigenvalues which are correlated normal random variables
whose multivariate distribution is explicitly known [12]. The asymptotic normal distribution
of the determinant is derived here by a simple inductive reasoning which is not based on
the latter fact. Otherwise stated, the reduced potential at the origin, V0 = −ln|dN,β |, has a
generalized Gumbel distribution, g1/2,−2,0(V0), at low temperature for a fixed value of N. For
large N and large β, a ln(N) variance of the distribution of the determinant of a scaled β-H
matrix results from the strongly correlated fluctuations of eigenvalues around their equilibrium
positions. The normal distribution holds whatever N at low temperature. For large N, it is
the form taken by the classical lognormal distribution of the determinant when β � ln N .
The low- temperature determinant distribution is expected to hold for other ensembles whose
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eigenvalues show strongly localized Gaussian fluctuations around the zeros of the orthogonal
polynomials associated with the probability measures which define these ensembles.
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Appendix A. Distributions of the elements of an N × N β-FTH matrix

The marginal distributions of a diagonal element Fkk and of an off-diagonal element Fk,k+1 of
a β-FTH matrix are obtained from equation (17):


P(Fkk) = �(Nρ/2)√

π�((Np − 1)/2)
× (1 − F 2

kk

)(Nρ−3)/2

−1 � Fkk � 1, k = 1, . . . , N

(A.1)

with a variance
〈
F 2

kk

〉 = 1
Nρ

and


P(Fk,k+1) = 2�(Nρ/2)

�(kβ/2)�((Nρ − kβ)/2)
× F

kβ−1
k,k+1 × (1 − F 2

k,k+1

)(Nρ−kβ−2)/2

0 � Fk,k+1 � 1, k = 1, . . . , N − 1
(A.2)

with
〈
Fk,k+1

〉 = �(Nρ/2)

�((Nρ+1)/2)
× �((kβ+1)/2)

�(kβ/2)
and

〈
F 2

k,k+1

〉 = kβ

Nρ
.

The amalgamation property (section 3) further shows that the distribution of Fkk(k =
1, . . . , m), for integer values of β, is nothing else than the marginal distribution of any
component of a unit vector UNρ

uniformly distributed on the surface of the unit sphere in RNρ

(appendix A of [32, 49]). Indeed, the distribution of the squares of the components of UNρ
is

a Dirichlet distribution whose parameters νk are all equal to 1 [49, p 20] as are those of the
diagonal elements of FN,β (equation (15)). The joint distribution of the diagonal elements of
FN,β is obtained from equation (17):

p(F11, . . . , FNN) = �(Nρ/2)

πN/2�((Nρ − N)/2)
×
(

1 −
N∑

k=1

F 2
kk

)(Nρ−N−2)/2

. (A.3)

The distribution of the trace, tr(FN,β), is calculated by performing first a change of variables
from DN = (F11, . . . , FNN) to D′

N = (F ′
11, . . . , F

′
NN), with D′

N = ODN where O is an
orthogonal matrix whose first line has all its elements equal to 1/

√
N , for instance an

Helmert matrix [51], so that F ′
11 = ∑N

k=1 Fkk/
√

N . The distribution of D′
N is still given by

equation (A.3)
(∑N

k=1 F 2
kk =∑N

k=1 F ′2
kk

)
and the distribution of x = tr(FN,β)/

√
N is then

nothing else that the distribution of F ′
11 given by equation (A.1). The distribution of the scaled

trace t = tr(FN,β) ×
√

βN

2 is then

p(t) =
√

2

πβ
× 1

N
× �(Nρ/2)

�((Nρ − 1)/2)
×
(

1 − 2t2

βN2

)(Nρ−3)/2

. (A.4)

Distribution equation (A.4) converges rapidly to an N(0, 1) Gaussian distribution when
βN2 → ∞.
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Appendix B. The distribution of a product of N independent non-central Gaussian
variables

We consider the product DN of N independent Gaussians Yk:


Yk = mk + Xk = N(mk, σ
2)

DN =
N∏

k=1

(mk + Xk)

mk �= 0, k = 1, . . . , N

(B.1)

where the Xk‘s are iid N(0, σ 2) Gaussians. The three first centred moments are then


〈
D2

N

〉
c

〈DN 〉2
=

N∏
k=1

(1 + zk) − 1

〈
D3

N

〉
c

〈DN 〉3
=

N∏
k=1

(1 + 3zk) − 3
N∏

k=1

(1 + zk) + 2

〈
D4

N

〉
c

〈DN 〉4
=

N∏
k=1

(
1 + 6zk + 3z2

k

)− 4
N∏

k=1

(1 + 3zk) + 6
N∏

k=1

(1 + zk) − 3

(B.2)

with zk = σ 2

m2
k

. If the distribution of DN (equation (B.1)) is dominated by the linear term of its

expansion, then this distribution is essentially Gaussian, being well approximated by a linear
combination of Gaussian variables. For that purpose, we impose that the leading terms in the
expansions of the first moments determine their values. The latter terms are〈
D2

N

〉
c

〈DN 〉2
= σ 2

D + · · ·
〈
D3

N

〉
c

〈DN 〉3
= 3σ 4S2 + · · ·

〈
D4

N

〉
c

〈DN 〉4
= 3σ 4

D + · · · (B.3)

with

S1 =
N∑

i=1

1

m2
i

S2 =
N∑

i �=j=1

1

m2
i m

2
j

σ 2
D = σ 2S1. (B.4)

The second term in the expansion of the variance is σ 4S2/2. The first term of the fourth
moment is that expected for a Gaussian N(0, σ 2

D). We determine σ and ε by the conditions

that both the absolute value of the scaled third moment,
∣∣ 〈D3

N 〉c
σ 3

D〈DN 〉3

∣∣ = ε and the second term

in the expansion of 〈D2
N 〉c

〈DN 〉2

/
σ 2

D are negligible as compared to 1, namely ε � (18S2)
1/2/S1

and σ = εS
3/2
2

/
3S1. The ratio

√
S2/S1 is less than 1 and can be very small. In the most

general conditions, the properly scaled product has most often a lognormal distribution when
N → ∞.

Appendix C. Some characteristics of 2 × 2 β-H and β-FTH matrices

C.1. β-HE

Whatever β, the exact eigenvalue density is easily obtained to be

pβ−H,2(λ) = exp(−λ2/2σ 2)

2ρσ
√

2π
�

(
−ρ,

1

2
;− λ2

2σ 2

)
(C.1)

where �(a, b; x) is a degenerate hypergeometric function [47]. For large β, the density is
then very well approximated by the sum of two correlated Gaussians in agreement with the
results of Dumitriu and Edelman (section 2.2).
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The distribution of the determinant D2,β is asymmetric with a mean equal to −ρ

(figure 3(a)). The exact values of the central moments about the mean
〈
Dn

2,β

〉
c
, n = 2, . . . , 7

are

〈
D2

2,β

〉
c
= 1 + ρ

〈
D3

2,β

〉
c
= −2ρ〈

D4
2,β

〉
c
= 9 + 12ρ + 3ρ2

〈
D5

2,β

〉
c
= −44ρ − 20ρ2〈

D6
2,β

〉
c
= 225 + 345ρ + 175ρ2 + 15ρ3

〈
D7

2,β

〉
c
= −1854ρ − 1344ρ2 − 210ρ3.

The reduced determinant is (equation (40))

d = D2,β + ρ

ρ1/2
= x1x2 − (y/2 − ρ)

ρ1/2
(C.2)

where x1, x2, y are independent and have respectively N(0, 1), N(0, 1) Gaussian distributions
and a chi-square distribution with β degrees of freedom. The characteristic function of d is
then

�2,β(t) = 〈exp(itd)〉 = exp(itρ1/2)

(1 + itρ−1/2)ρ
× 1√

1 + ρ−1t2
. (C.3)

The large ρ expansion of (1 + itρ−1/2)ρ shows finally that �2,β(t) tends to �2,∞(t) =
exp
(− t2

2

)
when β → ∞. The asymptotic distribution of D2,β+ρ√

ρ
is thus a N(0, 1) Gaussian.

C.2. β-FTHE

The determinant density of the β-FTHE, P F (D2,β), is deduced from that of the trace z =
F11 + F22 obtained from equation (A.4) with N = 2. From D2,β = 2λ1λ2 = z2 − 1 it follows
that

P F (D2,β) = �(1 + ρ)

2ρ
√

π�
(

1
2 + ρ

) × (1 + D2,β)−1/2(1 − D2,β)ρ−1/2 (C.4)

in agreement with our previous results for β = 1,2 (equation (16) of [24]). The first centred
moments are 


〈D2,β〉F = − ρ

1 + ρ

〈
D2

2,β

〉
F,c

= 1 + 2ρ

(1 + ρ)2(2 + ρ)〈
D3

2,β

〉
F,c

= 4ρ(1 + 2ρ)

(1 + ρ)3(2 + ρ)(3 + ρ)
.

(C.5)

Defining, for large ρ, x2 = ρ(D2,β + 1), the distribution of x obtained from equation (C.1)
tends to a chi distribution with one degree of freedom:

P F (x) =
√

2

π
exp(−x2/2) (x > 0). (C.6)

Appendix D. The even moments of D3, β for β → ∞ (σ = 1)

From the definition of the β-HE (equation (2)) we get

〈
D

2p

3,β

〉 =
〈(

N1N2N3 − N3

2
χ2

β − N1

2
χ2

2β

)2p
〉

(D.1)

where the five random variables in the right member are independent and N1, N2, N3 are iid
N(0, 1). The highest degree ρ2p term is simply calculated to be〈

D
2p

3,β

〉 = (5ρ2)p(2p − 1)!! (D.2)
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which shows that the asymptotic distribution of D3,β is an N(0, 5ρ2) Gaussian (σ = 1 in
equation (1)). The exact values of

〈
D

2p

3,β

〉
, p = 1,2,3, are



〈
D2

3,β

〉 = 1 + 3ρ + 5ρ2〈
D4

3,β

〉 = 27 + 108ρ + 267ρ2 + 198ρ3 + 75ρ4〈
D6

3,β

〉 = 3375 + 15 525ρ + 45 750ρ2 + 51 975ρ3 + 35 400ρ4 + 11 475ρ5 + 1875ρ6.

Appendix E. The generalized Gumbel distribution

The generalized Gumbel distribution considered below is (a > 0)

ga,θ,s(x) = aa|θ |
�(a)

exp(a{θ(x − s) − exp(θ(x − s))}). (E.1)

The cumulants Kn are thus deduced from the successive derivatives of the logarithm of the
characteristic function �(t) = 〈eitx〉 = eits�(a+it/θ)

�(a)ait/θ [52] at t = 0:


K1 = 〈x〉 = s + (ψ(a) − ln(a))/θ

K2 = 〈(x − K1)
2〉 = ψ(1)(a)/θ2

K3 = 〈(x − K1)
3〉 = ψ(2)(a)/θ3

K4 = 〈(x − K1)
4〉 − 3K2

2 = ψ(3)(a)/θ4

Kn = ψ(n−1)(a)/θn n > 1

(E.2)

where ψ(n)(x) = dn+1

dxn+1 ln �(x) is a polygamma function and [48]

ψ(n)(a) = (−1)n+1n!
∞∑

k=0

1

(a + k)n+1
. (E.3)

The coefficient of skewness γ1 = K3

K
3/2
2

is a measure of the asymmetry of the distribution with a

tendency to tail to the left when γ1 is negative. The coefficient of excess γ2 = K4

K2
2

is a measure
of shape. When it is positive, the distribution has longer tails than the normal distribution.
Both coefficients are zero for a Gaussian distribution. For a = 1/2, θ = 2, s = 0 the previous
cumulants and coefficients become


K1 = − (γ + ln2)

2
= −0.635 181 . . . K2 = π2

8
= 1.233 700 . . .

K3 = −7ζ(3)

4
= −2.103 599 . . . K4 = π4

16
= 6.088 068 . . .

Kn = (−1)n(n − 1)!

(
2n − 1

2n

)
ζ(n) n > 1

γ1 = −28
√

2ζ(3)

π3
= −1.535 141 . . . γ2 = 4.

(E.4)

The latter distribution is shown in figure 5(b) (β = 1000).
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